A research team led by Professor Hwangbo Jemin of the KAIST Department of Mechanical Engineering has developed a quadrupedal robot control technology that can walk robustly with agility even in deformable terrain such as a sandy beach.
Professor Hwangbo’s research team developed a technology to model the force received by a walking robot on the ground made of granular materials such as sand and simulated it via a quadrupedal robot. Also, the team worked on an artificial neural network structure that was capable of making real-time decisions to adapt to various types of ground surfaces without prior information while walking at the same time and applied it to reinforcement learning.
The trained neural network controller is expected to expand the scope of quadrupedal walking robots by proving its robustness in changing terrain, including the ability to move at high-speed even on a sandy beach and walk and turn on soft grounds like an air mattress without losing balance.
This research, with Ph.D. Student Soo-Young Choi of KAIST Department of Mechanical Engineering as the first author, was published in January in Science Robotics, titled “Learning quadrupedal locomotion on deformable terrain.”